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Abstract

Multi-Task Learning (MTL) is designed to train multiple cor-
related tasks simultaneously, thereby enhancing the perfor-
mance of individual tasks. Typically, a multi-task network
structure consists of a shared backbone and task-specific de-
coders. However, the complexity of the decoders increases
with the number of tasks. To tackle this challenge, we in-
tegrate the decoder-free vision-language model CLIP, which
exhibits robust zero-shot generalization capability. Recently,
parameter-efficient transfer learning methods have been ex-
tensively explored with CLIP for adapting to downstream
tasks, where prompt tuning showcases strong potential. Nev-
ertheless, these methods solely fine-tune a single modality
(text or visual), disrupting the modality structure of CLIP. In
this paper, we first propose Multi-modal Alignment Prompt
(MmAP) for CLIP, which aligns text and visual modalities
during fine-tuning process. Building upon MmAP, we de-
velop an innovative multi-task prompt learning framework.
On the one hand, to maximize the complementarity of tasks
with high similarity, we utilize a gradient-driven task group-
ing method that partitions tasks into several disjoint groups
and assign a group-shared MmAP to each group. On the other
hand, to preserve the unique characteristics of each task, we
assign an task-specific MmAP to each task. Comprehensive
experiments on two large multi-task learning datasets demon-
strate that our method achieves significant performance im-
provements compared to full fine-tuning while only utilizing
approximately ∼ 0.09% of trainable parameters.

Introduction
Multi-Task Learning (MTL) has surfaced as a potent ap-
proach in deep learning that allows for joint training of mul-
tiple correlated tasks within a unified network architecture,
resulting in enhanced model performance in comparison to
Single-Task Learning (STL). The core of MTL lies in learn-
ing both the task-shared and the task-specific representa-
tions. By capitalizing on shared representations and knowl-
edge across tasks, MTL enhances generalization and mit-
igates overfitting. Utilizing specific representations allows
MTL to preserve the distinct characteristics of each task.

*These authors contributed equally.
†Corresponding author.
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Figure 1: The trade-off between average accuracy over four
tasks on Office-Home (Venkateswara et al. 2017) dataset and
the number of trainable parameters. The radius of each circle
represents the relative amount of trainable parameters.

Moreover, training a unified model for multiple tasks is gen-
erally more parameter-efficient than training several single-
task models. Consequently, MTL has garnered considerable
interest in various fields, including Computer Vision (Shen
et al. 2021; Ye and Xu 2023), Natural Language Process-
ing (He et al. 2022), etc.

In this work, we mainly focus on vision multi-task learn-
ing. Prior research has predominantly concentrated on the
design of multi-task model training framework, encompass-
ing encoder-based methods (Gao et al. 2019) and decoder-
based methods (Xu, Yang, and Zhang 2023). However, with
the growing prowess of vision pre-trained models (e.g.,
ViT (Dosovitskiy et al. 2021), SwinTransformer (Liu et al.
2021)), directly fine-tuning these models for downstream
multi-task leads to substantial performance enhancements
and has become the mainstream approach for multi-task
learning (Liu et al. 2022). In this fine-tuning paradigm, it
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Figure 2: Illustrations of (a) text prompt tuning (Zhou et al. 2022), (b) visual prompt tuning (Jia et al. 2022b), (c) multi-modal
prompts learning (Khattak et al. 2023) and (d) our multi-modal alignment prompt tuning. represents trainable parameters,
represents frozen parameters, ⊗ represents Kronecker Product and [class] represents category name.

remains necessary to establish a distinct decoder for each
task, with trainable parameters that increase linearly.

To address the above issue, we incorporate the pre-trained
vision-language model CLIP (Radford et al. 2021) and con-
sider it tailor-made for vision multi-task learning. On one
hand, CLIP is trained to align language and vision modal-
ities using web-scale data (e.g., 400 million text-image
pairs), endowing it with a robust capability for zero-shot
transfer to vision downstream tasks. On the other hand, the
architecture of CLIP offers a distinct advantage. It comprises
a text encoder and an image encoder, eliminating the need to
establish additional decoder structures for each task. There-
fore, we opt for adapting CLIP to address vision multi-task.

Following the conventional pretrain-finetune paradigm,
the entire CLIP parameters (∼150M) would require updat-
ing, which presents challenges concerning computational
and storage expenses. Recently, numerous studies (Zaken,
Goldberg, and Ravfogel 2022; Jia et al. 2022b; Gao et al.
2021; Zhou et al. 2022) have introduced parameter-efficient
transfer learning techniques to achieve an optimal balance
between trainable parameters and performance on down-
stream tasks. Nonetheless, these existing methods primar-
ily concentrate on pre-trained vision models or language
models, with their applicability to more complex vision-
language models remaining uncertain. Moreover, these ap-
proaches tend to emphasize single-task adaptation, while
multi-task adaptation continues to pose a challenge.

To start with, we initially conduct a thorough examina-
tion of the performance of existing successful parameter-
efficient transfer learning methods when applied to CLIP for
vision multi-task learning, as shown in Figure 1. Through
our extensive studies, we discover that prompt tuning meth-
ods VPT-MT (Jia et al. 2022b), CoOp-MT (Zhou et al. 2022)
and MaPLe-MT (Khattak et al. 2023) are more suitable than
BitFit (Zaken, Goldberg, and Ravfogel 2022) and Adapter
(Gao et al. 2021). This may be attributed to the fact that Bit-
Fit and Adapter update model parameters and disrupt the
original structural integrity of CLIP. In contrast, prompt tun-
ing methods only modifies input embedding (text or image),
as shown in Figure 2. Moreover, we observe that MaPLe-
MT outperforms VPT-MT and CoOp-MT, emphasizing the
advantages of tuning both modalities simultaneously.

Subsequently, based on our observations, we propose a
novel Multi-modal Alignment Prompt (MmAP) for CLIP

along with a framework tailored for multi-task image recog-
nition scenarios. Our MmAP generates text prompts and vi-
sual prompts through a source prompt to achieve the tuning
alignment effect for both modalities. Additionally, we de-
sign a multi-task prompt tuning framework based on MmAP.
Previous MTL works (Fifty et al. 2021; Standley et al. 2020)
have confirmed that training similar tasks together yields
a complementary effect, while training dissimilar tasks to-
gether results in a negative effect. Therefore, we first employ
gradient similarity to group tasks and then assign a group-
shared MmAP for joint training. Furthermore, to maintain
the independent characteristics of each task, we establish
task-specific MmAP for each task individually. We evaluate
our method on two large cross-domain multi-task datasets,
including Office-Home and MiniDomainNet. Figure 1 dis-
plays the results on Office-Home, illustrating that our pro-
posed method has achieved a favorable trade-off between
trainable parameters and performance.

Our main contributions are as follows:
• We propose Multi-modal Alignment Prompt (MmAP)

for CLIP to favourably align its vision-language repre-
sentations while parameter-efficient tuning.

• Building upon MmAP, we design a multi-task prompt
learning framework for cross-domain image recognition
tasks, incorporating both group-shared MmAP and task-
specific MmAP.

• We devise a unified library grounded in CLIP to bench-
mark various parameter-efficient tuning methods for
multi-task image recognition. To the best of our knowl-
edge, we are the first to undertake this work.

• Experimental results on two commonly used visual
multi-task datasets show that our method achieves com-
petitive performance compared to multi-task full fine-
tuning leveraging merely ∼ 0.09% of the CLIP parame-
ters, as shown in Figure 1.

Related Work
Multi-Task Learning. Multi-Task Learning (MTL) aims
to simultaneously learn multiple tasks by sharing knowl-
edge and computation. There are two classic multi-task in
the field of computer vision. The first is dense scene under-
standing multi-task, which implements semantic segmenta-
tion, surface normal estimation, saliency detection, etc. for
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each input sample. Current research on multi-task dense
scene understanding primarily focuses on decoder structure
design (Zhang et al. 2021; Xu, Yang, and Zhang 2023; Liang
et al. 2023). The other is cross-domain classification multi-
task, and the input data consists of multiple datasets with
domain shifts. As multiple domains are involved, current re-
search emphasizes learning shared and private information
between domains (Shen et al. 2021; Long et al. 2017).

Vision-Language Model. Foundational vision-language
models (e.g., CLIP (Radford et al. 2021) and ALIGN (Jia
et al. 2021)) have exhibited remarkable capabilities in var-
ious vision tasks. In contrast to models learned with only
image supervision, these V-L models encode rich multi-
modal representations. Although these pre-trained V-L mod-
els learn rich representations, efficiently adapting them to
downstream vision tasks remains a challenging problem.
Numerous works have demonstrated improved performance
on downstream vision tasks by employing tailored meth-
ods to adapt V-L models for detection (Li et al. 2022;
Zhong et al. 2022), segmentation (Rao et al. 2022; Xu et al.
2022), and recognition (Wortsman et al. 2022). Furthermore,
HiPro (Liu et al. 2023) constructs a hierarchical structure to
adapt a pre-trained V-L model to various downstream tasks.

Parameter-Efficient Transfer Learning. Parameter Effi-
cient Transfer Learning (PETL) aims to adapt a pre-trained
model to new downstream tasks by training only a small
number of parameters. Existing PETL methods can be cat-
egorized into three groups: parameter tuning, adapter tun-
ing, and prompt tuning. Parameter tuning directly modi-
fies the parameters of a pre-trained model, either by tun-
ing the weights (Hu et al. 2022) or biases (Zaken, Gold-
berg, and Ravfogel 2022). Adapter tuning inserts trainable
bottleneck architectures into a frozen pre-trained model, in-
tending to facilitate learning for downstream tasks, such as
AdaptFormer (Chen et al. 2022), VL-Adapter(Sung, Cho,
and Bansal 2022), and CLIP-Adapter (Gao et al. 2021).
Prompt tuning unifies all downstream tasks into pre-trained
tasks via designing a specific template to fully exploit the
capabilities of foundation models (Jia et al. 2022a; Khattak
et al. 2023; Wang et al. 2023).

Method
In this section, we first revisit vision-language models with
a focus on CLIP. Subsequently, we introduce our proposed
Multi-modal Alignment Prompt (MmAP). Finally, we pro-
pose a unified prompt learning framework that incorporates
both group-shared MmAP and task-specific MmAP.

Contrastive Language-Image Pre-training
Image Encoder. In this work, we opt for ViT (Dosovitskiy
et al. 2021) as the image encoder to be compatibile with
the visual prompt (Jia et al. 2022b). Given an input image
I ∈ RH×W×3, the image encoder, consisting of K trans-
former layers, splits the image into M fixed-size patches
and projects them into patch embeddings E0 ∈ RM×dv . The
patch embeddings Ek, accompanied by a learnable class to-
ken ck, are fed into the (k + 1)-th layer Vk+1 of the image

encoder, and sequentially processed through the following
transformer layers:

[ck+1, Ek+1] = Vk+1([ck, Ek]) k = 0, 1, ...,K − 1. (1)

To acquire the ultimate image representation x, the class to-
ken cK from the last transformer layer is projected into the
V-L latent embedding space via ImageProj:

x = ImageProj(cK). (2)

Text Encoder. The text encoder adopts a transformer that
contains K layers to tokenize the input words and project
them into word embeddings W0 ∈ RN×dl . The Wk are di-
rectly fed into the (k+1)-th layer Lk+1 of the text encoder:

[Wk+1] = Lk+1(Wk) k = 0, 1, ...,K − 1. (3)

The final text representation z is obtained by projecting the
text embeddings associated with the last token of the con-
cluding transformer layer LK into V-L latent embedding
space via TextProj:

z = TextProj(WK). (4)

Zero Shot Prediction. For zero-shot prediction, a care-
fully designed prompt is introduced into the language branch
of CLIP, which serves to reconstruct the textual input by
equipping with every class name associated with the down-
stream tasks (e.g., “a photo of a [CLASS]”). The class with
the highest cosine similarity score is then selected as the pre-
dicted label ŷ for the given image, namely that:

p(ŷ|x) = exp (sim (x, zŷ) /τ)∑C
i=1 exp (sim (x, zi) /τ)

, (5)

where sim(, ) represents the computation of cosine similar-
ity. τ is the temperature coefficient learned by CLIP and C
is the total number of classes.

Multi-modal Alignment Prompt
Prior research has mainly focused on designing prompts
for a single modality. For example, VPT investigated visual
prompts, while CoOp introduced learnable text prompts. We
believe that merely tuning one modality disrupts the text-
image matching of CLIP, leading to sub-optimal adaptation
for downstream tasks. The most concurrent method MaPLe
proposed to use text prompt to generate visual prompt via
a MLP with considerable parameters, which exhibits limita-
tions regarding to visual modality and model efficiency.

To address these issues, we propose Multi-modal
Alignment Prompt (MmAP) to generate text prompt Pl ∈
Rb×dl and image prompt Pv ∈ Rb×dv simultaneously, as
depicted in Figure 2d. Here, we denote b as the length of
prompts, while dl and dv indicate the dimension of text
and image tokens, respectively. We first initialize a source
prompt Ps ∈ Rm×n and two individual scaling matrices
Ml ∈ R

b
m× dl

n and Mv ∈ R
b
m× dv

n for two modalities.
Then, we apply Kronecker Product to generate prompts for
text and image encoders as follows:

Pl = Ml ⊗ Ps =

 Ml11Ps · · · Ml1nPs

...
. . .

...
Mlm1Ps · · · MlmnPs

 , (6)
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Figure 3: Multi-Task Prompt Learning Framework, including (a) grouping tasks by maximizing the complementarity of
tasks with high similarity and (b) employing group-shared and task-specific MmAP for adapting CLIP to downstream tasks.

Pv = Mv ⊗ Ps =

 Mv11Ps · · · Mv1nPs

...
. . .

...
Mvm1Ps · · · MvmnPs

 . (7)

Our proposed MmAP offers two significant advantages.
Firstly, the use of the Kronecker Product ensures maximum
preservation of the information of source prompt Ps. This fa-
cilitates alignment between the text and image prompts. Sec-
ondly, the number of learnable parameters is significantly
reduced from K(dl + dv) to mn + K(dl+dv)

mn , where K rep-
resents the number of transformer layers. This reduction in
parameters not only makes the model more efficient but also
reduces the risk of overfitting.

Multi-Task Prompt Learning Framework
In multi-task learning, the joint training of similar tasks can
yield mutually beneficial outcomes. Typically, the degree of
task similarity can be quantified by evaluating the gradi-
ent conflict between tasks. In light of this, we first involves
grouping similar tasks together. A shared MmAP is assigned
to each group which facilitates the mutual learning and en-
hancement of tasks within the group. However, to maintain
the unique characteristics of each task, we also assign an
individual MmAP to each task. This individual MmAP en-
sures that the distinct features and requirements of each task

are adequately catered to. The overall multi-task prompt tun-
ing framework diagram is depicted in Figure 3.

Task Grouping. Existing MTL works (Fifty et al. 2021)
have demonstrated that gradient cosine similarity can quan-
tify the similarity of two tasks, i.e., the extent to which
two tasks can benefit from joint training. Therefore, we as-
sess the similarity of two tasks by computing gradients on
the shared parameters, while keeping the pretrained vision-
language model frozen, as shown in Figure 3a.

Specifically, given a global shared MmAP Pglb for all
tasks, the similarity between the i-th task and the j-th task
can be estimated as the following dot product:

sim(Ti, Tj) = ∇Pglb
LTi (Pglb) · ∇Pglb

LTj (Pglb) , (8)

where LT denotes the loss on task T . We posit that when
sim(Ti, Tj) > 0, it indicates that the two tasks exhibit a
mutual gain effect. Moreover, for robust estimation, we av-
erage multiple “snapshots” of similarity during the training
of the global shared MmAP. At a high level, we concurrently
train all tasks, evaluate pairwise task similarity throughout
the training process, and identify task groups that maximize
the total inter-task similarity.

Multi-Task Prompt Learning. We develop a unified
multi-task prompt learning framework upon our proposed



MmAP, as depicted in Figure 3b. Given N downstream tasks
{Ti}Ni=1, we first partition them into several disjoint groups
according to gradient similarities. For brevity, we denote G
as a task group that consists of |G| tasks (1 ≤ |G| ≤ N).
Then we construct group-shared MmAP for CLIP that con-
tains K transformer layers, including source prompts PG =
{P k

G}Kk=1, scaling matrices MGl
= {Mk

Gl
}Kk=1 and MGv

=

{Mk
Gv
}Kk=1 for language and vision branches, respectively.

The group-shared MmAP is cumulatively updated by all
tasks within group G, achieving complementary benefits
across similar tasks. Additionally, for every task in group G,
we build task-specific MmAP for learning unique task char-
acteristic, including source prompts PT = {P k

T }Kk=1, scal-
ing matrices MTl

= {Mk
Tl
}Kk=1 and MTv

= {Mk
Tv
}Kk=1

for language and vision branches.
During the training of one task T in group G, we first

generate text and image prompts of the k-th layers in two
encoders, and then we reconstruct the input tokens by com-
posing the class token, the generated prompts and the tex-
t/image tokens from the previous layer. Thereby the calcula-
tions of the k-th layers within text and image encoders can
be formally represented as:

[ , ,Wk] = Lk

([
P k
Gl
, P k

Tl
,Wk−1

])
= Lk

([
P k
G ⊗Mk

Gl
, P k

T ⊗Mk
Tl
,Wk−1

])
,

(9)

[ck, , , Ek] = Vk

([
ck−1, P

k
Gv
, P k

Tv
, Ek−1

])
= Vk

([
ck−1, P

k
G ⊗Mk

Gv
, P k

T ⊗Mk
Tv
, Ek−1

])
.

(10)
Here [·, ·] refers to the concatenation operation. Finally,

group-shared MmAP are cumulatively updated by optimiz-
ing the following loss:

L (PG ,MGl
,MGv

) =
∑
T ∈G

LT (PG ,MGl
,MGv

) , (11)

and task-specific MmAP are trained via:

L (PT ,MTl
,MTv

) = LT (PT ,MTl
,MTv

) , (12)

where LT is the cross-entropy loss of task T .

Experiment
Benchmark Setting
Datasets. Following prior MTL works (Shen et al. 2021;
Long et al. 2017), we consider Office-Home (Venkateswara
et al. 2017) and MiniDomainNet (Zhou et al. 2021) datasets
to construct our benchmark.

• Office-Home contains images from four tasks: Art, Cli-
part, Product and Real World. Each task covers images
from 65 object categories collected under office and
home settings. There are about 15,500 images in total.

• MiniDomainNet takes a subset of DomainNet, which is
an extremely challenging dataset for multi-task learning.
MiniDomainNet has 140,000 images distributed among
126 categories. It contains four different tasks: Clipart,
Painting, Sketch and Real.

Based on previous research w.r.t MTL and prompt learn-
ing (Shen et al. 2021; Zhou et al. 2022), we randomly select
10% (6-shot per class) and 20% (12-shot per class) samples
from Office-Home for training, and 1% (3-shot per class)
and 2% (6-shot per class) samples from MiniDomainNet for
training. The remaining samples are reserved for testing.

Baselines. In order to conduct a comprehensive evaluation
of our proposed method, we compare it against several tun-
ing baselines, including:
• Zero-shot uses hand-crafted text prompt (“a photo of

[class]”) templates to zero-shot prediction.
• Single-Task Full Fine-Tuning updates an individual

pretrained model for each task and Multi-task Full Fine-
Tuning updates an shared pretrained model for all tasks.

• Single-modal prompt tuning methods, including the stan-
dard CoOp (Zhou et al. 2022), trained on an individual
task for the text prompt tuning, and the standard VPT (Jia
et al. 2022b), trained on an individual task for the vi-
sual prompt tuning. CoOp-MT and VPT-MT are the
multi-task version, which train a task-shared prompt with
samples from all tasks. Additionally, the recent work
MaPLe (Khattak et al. 2023) serves as one of our base-
lines, which employs text prompts to generate visual
prompts. Similarly, we also construct a multi-task ver-
sion, referred to as MaPLe-MT.

• Other parameter-efficient tuning methods, including
CLIP-Adapter (Gao et al. 2021), which learns new fea-
tures on either a visual or a language branch, and Bit-
Fit (Zaken, Goldberg, and Ravfogel 2022), which tunes
the bias parameters of the pre-trained model.

Implementation Details. All experiments are conducted
using the PyTorch toolkit on NVIDIA V100 GPU, with
CLIP (ViT-B/16) chosen as our default model. To ensure a
fair comparison, we maintain consistent hyperparameter set-
tings across all parameter efficient tuning methods. Specifi-
cally, we use a batch size of 16/4 and train for 5 epochs for
Office-Home/MiniDomainNet. We employ the SGD opti-
mizer with a learning rate of 0.0035. We evaluate the check-
point of the last epoch and run the experiments with three
different seeds to obtain the average results. For the source
prompt Ps, we initialize it with a Gaussian distribution of
0.02 standard deviation.

Experiment Results
Office-Home. The results are presented in Table 1. Firstly,
we observe that our method is on par with Multi-Task
Full Fine-Tuning across different data splits (10% or 20%)
while requiring only 0.09% (0.13M vs. 149.62M) train-
able parameters. This represents a significant breakthrough
in parameter-efficient tuning of CLIP for multi-task image
recognition. Secondly, our method consistently outperforms
other parameter efficient tuning methods. In comparison to
prompt methods (i.e., MaPLe-MT, CoOp-MT, and VPT-
MT), our method exhibits a significant improvement, high-
lighting the necessity of integrating visual and text modali-
ties when tuning CLIP and combining the group-shared and
the task-specific knowledge.
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Single Task Learning Multi Task Learning

Method ZeroShot Full FT CoOp VPT MaPLe Full FT C-Adapter BitFit CoOp-MT VPT-MT MaPLe-MT Ours

10%

Art 82.9 84.9±0.9 84.2±0.3 83.7±0.5 84.4±0.5 85.8±0.8 82.3±0.2 79.1±0.1 84.3±0.8 84.0±0.3 84.8±0.6 85.7±0.5
Clipart 68.3 75.4±0.3 72.6±1.1 70.5±0.3 72.8±0.6 76.3±1.0 71.7±0.2 67.8±1.4 73.0±0.1 72.4±0.6 73.3±0.3 76.3±0.6
Product 89.3 91.6±0.3 92.4±0.2 90.9±0.2 92.2±0.1 92.1±1.3 90.8±0.2 86.7±1.5 92.7±0.2 91.7±0.6 92.7±0.4 92.9±0.5

Real 90.1 89.8±0.8 90.5±0.3 89.2±0.6 90.4±0.4 90.2±1.3 89.2±0.2 85.9±0.5 90.7±0.6 90.6±0.1 90.8±0.3 90.9±0.9
Average 82.6 85.4±0.6 84.9±0.5 83.6±0.4 85.0±0.4 86.1±1.1 83.5±0.2 79.9±0.9 85.2±0.4 84.7±0.4 85.4±0.4 86.5±0.6

20%

Art 84.6 87.1±1.2 85.6±0.6 85.4±0.6 85.9±0.4 87.4±0.8 83.2±1.1 81.7±0.6 86.0±0.2 85.9±0.3 86.3±0.4 88.2±0.7
Clipart 68.2 77.9±0.1 74.5±0.6 71.4±0.4 74.2±0.5 78.8±1.0 75.4±0.1 69.6±1.7 73.9±0.6 72.3±0.6 74.2±0.6 77.1±0.6
Product 89.5 91.9±1.3 93.0±0.4 91.5±0.6 92.8±0.6 93.0±1.0 91.7±0.9 87.2±1.4 92.9±0.4 92.1±0.2 92.9±0.2 93.5±0.5

Real 90.7 89.8±0.6 91.8±0.3 90.9±0.1 91.8±0.4 91.9±0.4 90.6±0.2 86.7±1.0 92.0±0.3 91.7±0.3 92.0±0.5 92.4±0.3
Average 83.3 86.7±0.8 86.2±0.5 84.8±0.4 86.2±0.5 87.8±0.8 85.2±0.5 85.5±0.4 86.3±0.4 85.5±0.4 86.4±0.4 87.8±0.5

Parameters - 598.48 M 0.04 M 0.68 M 19.2 M 149.62 M 0.53 M 0.17 M 0.01 M 0.17 M 4.8 M 0.13 M

Table 1: Comparison to various methods on Office-Home, using the average accuracy (%) over 3 different seeds. The benchmark
is implemented by us, based on CLIP with ViT-B/16 backbone. We highlight the best and the second results.

Single Task Learning Multi Task Learning

Method ZeroShot Full FT CoOp VPT MaPLe Full FT C-Adapter BitFit CoOp-MT VPT-MT MaPLe-MT Ours

1%

Clipart 82.6 82.1±1.5 82.7±0.1 82.3±0.1 82.9±0.2 82.8±0.9 82.6±0.1 78.9±0.4 83.4±0.4 83.0±0.3 83.4±0.4 83.9±0.3
Painting 82.3 81.8±0.7 81.8±0.3 81.7±0.3 82.0±0.2 81.5±0.6 80.4±0.3 74.7±0.4 82.3±0.2 81.9±0.6 82.5±0.4 83.5±0.2

Real 91.2 89.1±0.5 91.9±0.3 91.6±0.2 92.0±0.3 89.1±0.6 90.9±0.2 84.2±0.3 91.3±0.1 90.1±0.2 91.4±0.1 92.2±0.2
Sketch 79.9 77.0±0.7 77.1±0.2 78.5±0.3 78.5±0.4 77.2±1.0 78.3±0.6 72.4±0.5 79.2±0.2 78.6±0.6 79.1±0.2 79.8±0.7

Average 84.0 82.5±0.9 83.4±0.2 83.5±0.2 83.9±0.3 82.7±0.8 83.0±0.3 77.6±0.4 84.0±0.3 83.4±0.4 84.1±0.3 84.9±0.4

2%

Clipart 82.6 82.2±1.3 83.8±0.1 83.5±0.3 83.8±0.4 82.8±0.9 83.1±0.1 81.5±0.2 84.7±0.3 83.8±0.5 84.5±0.3 85.7±0.4
Painting 82.3 82.1±1.4 82.5±0.2 82.4±0.1 82.7±0.2 82.1±0.7 81.5±0.3 76.8±0.2 83.2±0.2 82.2±0.1 83.6±0.4 85.0±0.2

Real 91.2 89.2±0.8 91.9±0.1 91.5±0.1 91.6±0.2 89.3±0.5 90.6±0.2 85.9±0.1 91.7±0.1 90.5±0.1 91.9±0.2 92.3±0.1
Sketch 80.0 77.4±0.5 79.0±0.5 79.6±0.2 79.9±0.3 77.7±1.0 78.7±0.6 74.8±0.2 80.1±0.4 79.0±0.2 80.5±0.3 81.5±0.2

Average 84.0 82.7±1.0 84.3±0.2 84.2±0.2 84.5±0.3 83.0±0.8 83.4±0.3 79.8±0.2 84.9±0.4 83.9±0.3 85.1±0.3 86.1±0.2
Parameters - 598.48 M 0.04 M 0.68 M 19.2 M 149.62 M 0.53 M 0.17 M 0.01 M 0.17 M 4.8 M 0.13 M

Table 2: Comparison to various methods on MiniDomainNet, using the average accuracy (%) over 3 different seeds. The
benchmark is implemented by us, based on CLIP with ViT-B/16 backbone. We highlight the best and the second results.

Regarding the number of trainable parameters, our
method ranks second only to CoOp-MT, achieving the
best trade-off between accuracy and trainable parameters.
Thirdly, we also find that prompt methods outperform CLIP-
Adapter and BitFit, indicating that aligning downstream data
with CLIP is a more efficient approach.

MiniDomainNet. The results are shown in Table 2. We
can draw consistent conclusions with Office-Home. Our
method performs the best and achieves 84.9% on the 1%
split and 86.1% on the 2% split. However, we observe that
the performance of Full Fine-Tuning is not very satisfactory
and is worse than most parameter-efficient tuning methods,
which is caused by overfitting. Specifically, the task diffi-
culty of MiniDomainNet is significantly increased compared
to Office-Home, and concurrently, the number of training
data is limited. Moreover, the BitFit method exhibits the
worst performance. It updates few parameters of the CLIP
using a small amount of data, which severely impairs the
original zero-shot capability of CLIP.

The effects of CoOp-MT, VPT-MT, and MaPLe-MT can
only approach zero-shot on the 1% split, but when the
amount of training data reaches 2%, CoOp-MT and MaPLe-
MT surpass zero-shot by 0.9% and 1.1%, respectively.
Therefore, to explore the performance under different train-
ing data sizes, we set up related experiments, as detailed in
ablation study.

Ablation Study
In this section, we construct various ablation experiments to
further analyze our proposed MmAP and multi-task prompt
learning framework. At the same time, we also design re-
lated experiments for different downstream data size.
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Figure 4: Ablation study of MmAP on Office-Home and
miniDomainNet datasets. We construct two baselines: (a)
jointly training the text and visual prompts, and (b) utiliz-
ing two MLP layers to generate the text and visual prompts.



Figure 5: Main results on Office-Home (four tasks) under the k-shot setting. We report the accuracy (%) for 1/3/6/12 shots.
Overall, our method attains substantial improvements over zero-shot CLIP and performs favorably against other baselines.

Effectiveness of MmAP. To verify the effectiveness of our
proposed MmAP, we set up related ablation experiments. As
displayed in Figure 4a, a straightforward approach for multi-
modal prompts is to tune the text and visual prompts jointly.
Another straightforward solution involves sharing text and
visual prompts. However, since the dimensions of the Text
Encoder (dl = 512) and Image Encoder (dv = 768) of
CLIP are not equal, they cannot be shared directly. There-
fore, we design the MLP prompt baseline as another com-
parison scheme, which employs two MLP layers to generate
the text and visual prompts, as shown in 4b.

The results are shown in Figure 4c. Across the four tasks
of Office-Home, the MLP baseline exhibits a 0.5% improve-
ment compared to the joint train baseline, demonstrating
the effectiveness of establishing a connection between the
text prompt and the visual prompt. Additionally, we observe
that MmAP achieves a 0.54% improvement compared to the
MLP baseline, indicating that the MmAP method is more ef-
fective in maximizing information sharing between the text
and visual prompts through the Kronecker Product. At the
same time, MmAP trainable parameters are greatly reduced
relative to the MLP baseline (0.13M vs. 3.96M).

Task Specific Group Shared Office-Home

Task Group Random 10% 20%

✓ 85.76 86.97
✓ 86.05 87.29

✓ ✓ 85.80 86.92
✓ ✓ 86.48 87.77
✓ All in one group 86.09 87.36

Table 3: Ablation study of Multi-Task Prompt Learning
Framework. “Random” means grouping tasks randomly.

Effectiveness of Multi-Task Prompt Learning Frame-
work. In our multi-task prompt learning framework, task-
specific MmAP and group-shared MmAP are the primary
components. To verify the importance of each module, we
conduct related ablation experiments on Office-Home, and
the results are presented in Table 3. To substantiate the ef-
fectiveness of task grouping strategy, we incorporate random
grouping as a benchmark for comparison. The empirical re-

sults elucidate that each module within our framework plays
a pivotal role, cumulatively contributing to the superior per-
formance achieved by our multi-task prompt learning frame-
work. Compared to the random grouping, our task group-
ing performs 0.68% and 0.85% higher under the settings of
10% and 20%, respectively. Compared to the all task in one
group, our task grouping performs 0.39% and 0.41% higher
under the settings of 10% and 20%. From another perspec-
tive, task-specific MmAP surpasses that of CoOp and VPT
(results in Table 1), further demonstrating the effectiveness
of our MmAP.

Different Downstream Data Size. We examine the im-
pact of training data size on Office-Home (four tasks). We
select 1/3/6/12 shots per class and compare our MmAP with
CoOp-MT, VPT-MT, and MaPLe-MT. The results for each
task and method at different training data scales are pre-
sented in Figure 5. The results indicate that our method
surpasses all other baselines on the four tasks across data
scales, confirming our method’s strong generalization. How-
ever, we observe that all methods underperform in compari-
son to Zero-Shot in the 1-shot setting for Art and Real World
tasks. This may be due to the fact that 1-shot is too specific
to serve as a general representation for the entire task. When
provided with 3 or more shots for training, the average per-
formance gap introduced by our method is substantial.

Conclusion
In this work, we propose the Multi-modal Alignment Prompt
(MmAP) for adapting CLIP to downstream tasks, which
achieves the best trade-off between trainable parameters and
performance against most of the existing methods. Simul-
taneously, MmAP addresses the issue of previous single-
modal prompt methods (e.g., CoOp and VPT) disrupting
CLIP’s modal alignment. Building on MmAP, we design a
multi-task prompt learning framework, which not only en-
ables similar tasks to be trained together to enhance task
complementarity but also preserves the independent charac-
teristics of each task. Our approach achieves significant per-
formance improvements compared to full fine-tuning on two
large multi-task learning datasets under limited downstream
data while only utilizing ∼ 0.09% trainable parameters.
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